

Oracle Warehouse Builder 10g

Architectural White paper

February 2004

Table of contents

INTRODUCTION .. 3

OVERVIEW ... 4
THE DESIGN COMPONENT .. 4
THE RUNTIME COMPONENT ... 5

THE DESIGN ARCHITECTURE.. 6
THE REPOSITORY... 6
THE METABASE .. 6
THE API AND SDK LAYER.. 7
IMPORTING METADATA ... 8
DEPLOYING METADATA AND CODE ... 8
THE CLIENT TOOL.. 9
THE METADATA REPORTING ENVIRONMENT.. 10

THE RUNTIME ARCHITECTURE.. 11
THE ETL ENGINE .. 11
DATA STORAGE AND QUERYING FACILITIES .. 12
PARALLEL PROCESSING BY DEFAULT .. 13
DATA QUALITY IN THE ENGINE ... 13
RUNTIME INFORMATION AND REPORTING.. 13

CONCLUSION... 15

Page 2

Introduction

Oracle Warehouse Builder 10g is the only enterprise Business Intelligence integration design tool
that manages the full life-cycle of data and metadata for the Oracle database. Leveraging
Oracle’s Business Intelligence features and scalability, Warehouse Builder allows designers and
developers to design, instantiate, manage and maintain data warehouses for the enterprise or for
the department.

The process to design and develop a business intelligence solution is complex. To select the right
tool and vendor plays a great part in easing this process. This white paper describes the Oracle
Warehouse Builder architecture and explains why using this tool is ideal for customers choosing
an ETL and design environment for their business intelligence projects.

The core to all business intelligence solutions is consolidation and integration of data. However,
organizations generally tend to buy and use a variety of tools from different vendors. A second
integration problem emerges when they try to integrate their metadata between these disparate
tools. Oracle’s value proposition is to provide an integrated solution; not to integrate tools for each
individual organization. Accordingly organizations only face the task of integrating their data.

Why is Oracle Warehouse Builder so important to the business intelligence solution? The answer
is found in the importance of metadata for a number of different users in the organization. The
ETL tool should, and Oracle Warehouse Builder does, play an important role in the overall
metadata strategy of the organization. Instead of integrating tools by trying to synchronize
metadata stores, Oracle Warehouse Builder owns most of the query tool information and allows
query and OLAP tools to use this metadata. Instead of integrating tools and information Oracle
Warehouse Builder provides an integrated solution out of the box.

Page 3

Overview

 Warehouse Builder is a repository-based tool for ETL and data warehousing. The basic
architecture comprises two components, the design environment and the runtime environment.
Each of these components
handles a different aspect of
the system; the design
environment handles metadata,
the runtime environment
handles physical data.

The metadata component (the
top half in the figure) revolves
around the metadata repository
and the design tool. The data
component (the bottom half in
the figure) revolves around the
runtime environment and the
warehouse database.

The design component

The Warehouse Builder design
component consists of a highly
scalable metadata repository
that is stored in an Oracle
database and a set of client design and reporting tools written in Java or HTML. Using these tools
metadata can be viewed and manipulated.

Source
Meta
data

Design
Meta
data

Source
Data

Warehouse Builder
Metadata Repository

Warehouse
Builder

Design Client

Metadata
Reporting

Warehouse Builder
Runtime Environment

Runtime
Reporting

Warehouse
Target

Creating metadata is a design activity that uses the client tool to design objects, processes and
jobs in the editors. This interactive way of creating metadata is typically used to design a new
system. Warehouse Builder supports the design of relational database schemas, multi-
dimensional schemas, ETL processes and End User tool environments through the client.

Source systems play an important role in any ETL solution and instead of creating this manually,
Warehouse Builder provides integrated components that import the relevant information into it’s
repository.

One of the strengths of the architecture is the so-called life-cycle management that allows
metadata to be updated based on changes in the source systems. Warehouse Builder then
facilitates propagating these changes to the ETL processes and the target systems.

To ensure the quality and completeness of the metadata in the repository Warehouse Builder
provides extensive validation within the repository. Validation helps to keep a complex system
that is created by multiple users in an accurate and coherent state.

To further aid in the development and evaluation of the metadata, a web based metadata
reporting environment is available. The reporting environment allows developers and business
users to browse and investigate system elements without using the design tools. A very important
component of this reporting environment is the Impact Analysis capabilities allowing the
identification of the impact of changes throughout the system before they are made. Impact
Analysis reporting allows for better control on changes and better planning for the implementation
of these changes. The opposite capability, tracing back where data originated from, is called Data
Lineage reporting and is also provided in Warehouse Builder.

Page 4

The runtime component

Once the user has designed the ETL system on a logical level, he needs to move it to the
physical database environment. Before this can be done, information about the database
environment is added (configuration) to the logical design. After the configuration is complete,
code can be generated.

Warehouse Builder generates extraction specific languages1 for the ETL processes and SQL
DDL statements for the database objects. The generated code is deployed, either to the file
system or into the database.

Performing the ETL functions means running the deployed code in the database via for example
Oracle Enterprise Manager. The ETL process then pulls the source data into the target
database2. This can be a staging area, and operational data store, a warehouse or any other
schema. Note that the code sections external to the Oracle database are executed in their
respective environments. ABAP code to extract from SAP systems is for example run in the SAP
environment.

To allow reporting on data loads, the code generated by Warehouse Builder contains audit
routines. These routines write information about the ongoing load into the Warehouse Builder
runtime tables. Information captured while running the code can include the number of rows
selected, inserted and updated. If an error occurs while transforming or loading data, the audit
routines report the errors into the runtime tables. To allow easy access and convenient reporting
on this runtime information, Warehouse Builder provides the Runtime Audit Browser.

Dependency management and scheduling is provided by a close integration with specific Oracle
tools. Oracle Enterprise Manager (OEM) is Oracle’s scheduling and database management tool.
Warehouse Builder creates jobs in the OEM repository, which can be scheduled and monitored
along with other database activities. Through the interaction with Oracle Workflow (OWF) the
Warehouse Builder user can create full-blown processes for dependencies between the ETL
processes including notifications.

1 Languages include: SQL*Loader control files for flat files; ABAP for SAP/R3 extraction and

PL/SQL for all other systems.
2 Supported target databases for Warehouse Builder are Oracle 8i EE and Oracle 9i EE and

Oracle 10g EE (you will need Warehouse Builder 10g for 10g database support).

Page 5

The design architecture

Openness, productivity and reliability are keywords in defining a warehouse design platform. This
chapter will discuss these characteristics of the Warehouse Builder design architecture. After the
high level overview showing all building blocks for the Warehouse Builder architecture this
chapter will detail the components of the design architecture.

The central concept in the
design architecture is a
repository stored in an
Oracle database. This
repository, which is managed
by the Warehouse Builder
MetaBase, provides services
to all producers and
consumers of metadata. The
graphical representation of
the architecture shows that
the MetaBase is the hub
distributing and receiving
metadata.
Through APIs the client tool
provides graphical editors
that manipulate the metadata
in the repository via the
MetaBase services. The
import and deploy services
are extensions to the
MetaBase and act as
interfaces to the world outside the MetaBase. To enable SQL access to the MetaBase public
views are provided which are used by the metadata reporting environment. Each of these
components as well as their main interactions will be discussed in detail in the following
paragraphs.

The repository

The repository is a relational structure holding data elements at a granular level. It stores data,

which is aggregated in the MetaBase to represent objects to the users. The repository
is in essence a data structure providing highly scalable data storage in an Oracle
database. Since the repository is running on the Oracle enterprise edition database,
openness, scalability and reliability are guaranteed.

The MetaBase

The core functionality of the repository is separated from the database and is called the

Warehouse Builder MetaBase. This component is the actual hub within the
metadata management architecture delivering the bulk of the services required by
the developer.

The MetaBase enables a scalable solution that allows for custom activities as required by the
Warehouse Builder client design components. Two very important components related to the
MetaBase are the import and deploy services that will be discussed separately. The other main
services are discussed below.

Deploy Import

Repository

Warehouse Builder MetaBase

API & SDK

WEB

Warehouse Builder Client

REL ETL BITDIM

Views

Page 6

Object storage and retrieval
Objects are stored in the database. However, to store and retrieve them the MetaBase allows for
a coordinated and controlled mechanism. This is decoupled from the database mechanism to
allow for a stand-alone service of the MetaBase.

Warehouse Builder knows the concept of a First Class Object (FCO), which is a group of objects
that is combined to one meaningful object for the user (e.g. a business component like a table is
an FCO however; the table has multiple Second Class Objects (SCO) such as columns and
constraints). The MetaBase ensures retrieval and storage of FCOs.

Multi-user and locking service
In order to retrieve and then allow editing (e.g. write changes back to the repository) an object
needs to be locked. Since this object (an FCO) consists of multiple components the MetaBase
will need to lock all of the SCOs in order to ensure retrieval and editing of one object at the time.
Since Warehouse Builder is multi-user, this locking is more complex. The first user to open an
object will acquire the read/write lock on the whole FCO. All consecutive users will only get a read
lock. The MetaBase will allow refreshing of this view after the user with the write privileges has
committed his changes. The commit is translated by the MetaBase into a database commit.

Framework support for business logic
All services supplied by Warehouse Builder are rooted in the MetaBase, which provides a
framework on top of which the business logic is layered. This business logic interprets the objects
retrieved and stored by the MetaBase.

The main functions for the business logic are core to supporting Warehouse Builder generation
and validation services. Validation allows verification of the metadata to allow for early reporting
on mismatches or errors. Generation is a service that compiles the code and delivers the code.

The API and SDK layer

In order to allow the client tools to connect and talk to the MetaBase, a SDK (Software
Developers Kit) and an API layer is provided. To allow for read-only SQL access, a set of public
views is provided.

Public APIs and scripting
This set of public APIs allows users of Warehouse Builder to manipulate the repository in a

controlled manner without the user interface. Implementing the APIs is a phased
project and in the initial release of OWB, the structural APIs are published. The
APIs are fully documented Java APIs. Since they are public backward

compatibility is guaranteed.

Based on the APIs, Warehouse Builder provides users with a scripting languageError! Bookmark not

defined. in which metadata manipulation commands can be executed from a command line
interface. Scripting supports direct actions on the repository as well as the execution of batch
scripts. This mechanism provides an ideal way of applying batch updates to a repository. The
scripting language is based on the TCL scripting language.

Public views

 In order to provide read-only access to the repository via SQL, Warehouse Builder
provides public views, both on the design and the runtime repository. The Warehouse
Builder Browser uses these views to report metadata to end-users in a secure and
efficient way. To build their own reporting environment on the repository users can
utilize these views. The views are documented and backward compatible across

releases.

Page 7

Importing metadata

Retrieving metadata from external systems is a major component of building a data warehouse.

In order to load data from a source system, an ETL tool must understand at least
some of the metadata in that source system. Warehouse Builder has a unique
architecture that allows detailed information to be extracted and reconciled for the
source system.

From an architecture standpoint, Warehouse Builder applies two different types of metadata
integration solutions.

Point-to-point solutions are built to extract metadata from specific systems adding intelligence to
the extraction specific to these systems. An example of this would be the SAP Integrator
solution3. This integrator is specifically designed for SAP R/3 systems and accesses the Business
Object Repository of the SAP system via Remote Function Calls (RFCs). This allows Warehouse
Builder to read the business logic of the SAP system and extract that information into the
repository. Warehouse Builder uses this information to generate source specific extraction code
(ABAP in the case of SAP).

Another form of point-to-point metadata import (and export) is the import of Warehouse Builder’s
own metadata through Metadata Loader (MDL). MDL allows for metadata import from other
Warehouse Builder repositories. This import capability is highly flexible and can even be used to
patch existing metadata.

The second solution is the usage of standards based solutions. These can be internal or external
standards. The most important standard and source for Warehouse Builder is the Oracle
database catalog4. Other standards that Warehouse Builder supports are of course OMG-CWM
(Object Meta Group – Common Warehouse Method) and ODBC.

A unique out of the box feature in Warehouse Builder is the metadata reconciliation from the
sources with the repository information. This allows designers to add or alter the repository
metadata in a controlled and predictable fashion. Warehouse Builder shows the impact on the
metadata via a report and allows an assessment of the impact all the way to the target. This way
the designer can estimate the impact and then choose to do propagate the changes in a planned
timeframe.

Deploying metadata and code

Deployment moves the design into a tangible warehouse environment. In that sense, deployment

is the bridge between the design architecture and the runtime architecture.

Warehouse Builder allows developers to deploy a system to various environments.
Depending on the scope of the generated code, deployment of an entire module can

be done to multiple target systems. The same generated code can be deployed to a test and a
production environment by simply changing the environment information. Individual objects as
well as entire systems can be deployed, enhancing the granularity and flexibility of the
deployment service.

3 Other point-to-point solutions include a flat file integrator, Oracle Applications integrator, Oracle

Designer and CA ERWin import. The latter two can be imported into target modules as well.
4 Transparent gateways use this standard via the heterogeneous connection on the database,

making the Oracle catalog the standard for relational systems access for Warehouse Builder.

Page 8

Life-cycle management
A unique feature that Warehouse Builder provides is the management of changes on the target
database as a result of changes in the metadata definitions. Instead of dropping objects causing
all sorts of issues in the warehouse environment, Warehouse Builder provides generation of
update scripts. Before applying any of these updates, the designer can view the provided Impact
Analysis report and choose to postpone or apply the changes. This reporting leads to a planned
and easy upgrade of the warehouse without massive downtimes and reload operations, making
Warehouse Builder’s architecture unique within the ETL tool space.

The client tool

Warehouse Builder contains a number of design tools to complete the design of the entire
warehouse solution. Relational, multi-dimensional and Business Intelligence tool design are
covered next to the core functionality in the ETL designer. The entire client software is written in
Java. For more information on the client tools and capability, please look at the Warehouse
Builder User’s Guide or the overview white paper. The following paragraphs will summarize the
capabilities of the client tool.

Relational design
The relational schema designer allows the warehouse designer to create relational schemas. The

main objective of this designer is to allow the developer to design 3rd normal form
schemas and allow for different ways to store data in the warehouse environment. A 3rd
normal form ODS (Operational Data Store) can therefore be modeled in Warehouse
Builder as easily as a dimensional structure. The designer also allows the developer to
view source and warehouse schemas, including relationships, in a schematic view.

Dimensional design
 The dimensional designer specifically enables easy design of multi-dimensional structures. It

allows for easy creation of multiple hierarchies per dimension, multiple shared levels
and easy linkage to the fact tables. Dimensions can have assigned roles and can be
linked multiple times to the same fact. A fact editor provides a wizard driven method to
create facts based on the dimensions available in the repository. Warehouse Builder
provides automatic key and index creation on the fact foreign keys to allow star query

transformation on facts generated from the tool.

ETL design
The main function of Warehouse Builder is the design of ETL processes. In this design

Warehouse Builder provides a separation between the physical implementation of the
process and the business logic designed in the logical view of this process. ETL
designers will first design the logical view of the process by specifying the business
logic in a graphical picture. This logical view is configured and translated into a physical
implementation. Specifying the configuration will dynamically influence the generated

code. For example, when adding configuration and stating that the deployment environment is a
newer version of the database Oracle 8i, different code will be generated making use of specific
ETL capabilities in the newer Oracle database release. Alternatively different configurations can
be applied to different environments (development and production).

Business intelligence design
The business intelligence designer enables Warehouse Builder users to create the metadata for

the Oracle Discoverer End User Layer (EUL) and populate it from Warehouse Builder. It
allows specification of properties for the EUL objects and derives the metadata for the
objects from the objects in the Warehouse Builder repository. For example a dimension
object can become a folder object and inherits the hierarchy as an item class. All
attributes in the dimension become the items in the folder.

Page 9

These client capabilities make Warehouse Builder a flexible design and ETL tool generating
optimized code for the Oracle environment and providing tight integration.

The metadata reporting environment

In order to allow easy access to the important information in the Warehouse Builder repository a

separate mechanism is added to view this metadata in comprehensive reports. Oracle
Portal is the delivery platform providing reports with browsing capabilities in a user friendly
and secure environment.

Warehouse Builder metadata reporting is browser based and inherits Portal security.
Reporting is split into several portlets, including administration of the browser environment
and the actual metadata browsing portlet.

These metadata reports all run on top of the public views, which means that all the information
shown in the browser reports can be accessed through other tools. The reports are easily
extendible, allow for custom information to be placed in them and can be combined with
Discoverer portlets to create a comprehensive warehouse portal for administration and end users.

If you do not want to use the secure and scalable framework of Oracle Portal you can run the
metadata reports standalone using the HTTP server on the repository database. This way you
have all the reporting capabilities but are not bound to Oracle Portal.

All of these reports can be launched from a browser without installing any Warehouse Builder
software on the client computer. The reports can be launched from the client tool as well.
Combining the information from the graphical Lineage and Impact Analysis reports, the designer
of the warehouse has a powerful tool to quickly adapt the design of the warehouse to the ever-
changing environment.

Page 10

The runtime architecture

The runtime architecture of a warehouse system is as important as the design. Reliability,
scalability and openness are keywords in defining an ideal warehousing runtime platform.

The graphical overview of
the architecture shows that
the Oracle database is the
platform on which all
Warehouse Builder specific
components run.

This is one of the major
differences with many ETL
tools in the market.
Warehouse Builder does
not have its own external
engine that runs ETL jobs.
The jobs (generated code)
run in the Oracle database
engine. This way the ETL
process is brought to the
data, not vice versa. The
other advantage of this
close alignment with the
database engine is the inherent scalability and reliability of the platform. Leveraging the ETL
features built into the Oracle database, Warehouse Builder can provide organizations with code
optimized for running on their Oracle database platform, reducing the need for additional tuning
and training.

The ETL engine

Warehouse Builder generates code that leverages many features of the Oracle
database. The database performs dual roles in the runtime architecture. This
paragraph will focus on the ETL engine capabilities and usage of this within
Warehouse Builder code. The other role, data storage and retrieval engine, is
covered in the next paragraph.

Extracting data
A typical ETL process consists of three stages. The first is obviously the extraction of the data
from the source systems. The architecture for Warehouse Builder is designed to allow extraction
from heterogeneous platforms (into Oracle using various methods running as much code as
possible on the Oracle target platform – re-word).

Warehouse Builder calls several utilities to extract data from source platforms. For files the
default method is to use SQL*Loader, the bulk loader provided with the Oracle database.
SQL*Loader allows the fast extraction from flat files in either direct path mode or in a more
controlled, conventional mode. Using the database to the utmost, file extraction can be done via a
so-called external table. This construct, introduced in the Oracle 9i timeframe allows Warehouse
Builder to treat files as relational objects, so that the extraction of flat file data can be done in
parallel without first splitting up the file.

When using Warehouse Builder to extract from SAP, ABAP code is generated and moved to the
SAP platform. The code is executed on the SAP platform in the SAP scheduler. In order to

Oracle 9i RDBMS

Name &
Address
libraries

Name &
Address
Server

PL/SQL
API

Extraction
Transformation

and Loading

Runtime
Repository

Data Storage

Runtime
Reporting

Data
Sources

Page 11

achieve better scalability some extractions can be done using PL/SQL on the regular tables.
Warehouse Builder allows for both implementations enabling a highly scalable extraction.

When extracting from relational systems, Warehouse Builder uses database links to access the
remote system. If this is an Oracle database it is direct access. All other relational databases are
accessed using a database link through gateway access (ODBC is a generic gateway) through
the heterogeneous services in the database. In both cases the user would not see any difference
in Warehouse Builder between all of these different sources.

Warehouse Builder adds hints to the generated code to ensure most of the data processing (for
example sorting and filtering) is done on the source system. Allowing the volume of data moved
across a network to be significantly reduced.

When using database links to for example other Oracle database sources, Warehouse Builder
adds hints to the code to ensure most of the data processing (for example sorting and filtering) is
done on the source system. This way the volume of data moved across a network is significantly
reduced.

Transforming and loading
Once the data is moved into an Oracle environment, Warehouse Builder leverages the
transformation and load capabilities of the database. Features include pipelining extraction,
complex parallel transformations and parallel loading of the warehouse.

Warehouse Builder generates PL/SQL to handle the Oracle based transformations, which provide
operators to do SQL like activities. Warehouse Builder also provides out of the box
transformations or user-defined transformations. The designer can create complex processes by
combining all of these in graphical representations and generate either row based or set based
code.

Row based code gives the user a high degree of control over what happens in the load as well as
very extensive error handling capabilities. Row based processing however is typically slow. To
benefit from row based processing but still achieve performance, Warehouse Builder allows the
user to generate bulk processing from the same logical process. The designer can set the size of
bulk arrays to be processed as one unit of work, achieving much higher throughputs with a high
level of control. In most situations set based processing will however still be faster than bulk
processing. Inserting into a target (with or without processing) is always faster in one SQL insert
statement.

Unfortunately not all data added to a target table consists of inserts. Updates of existing records
are very common. Previously these could only be handled in row-based modes when mixed with
inserts in the same process. Oracle solved that problem by introducing the MERGE statement in
SQL. Utilizing this, inserts mixed with updates can be handled in one single SQL statement.
Resulting in higher load performance, but also reduces complexity in design and code, making
the maintenance and testing efforts smaller when using Warehouse Builder.

Data storage and querying facilities

Once the data has been moved into the Oracle database, other characteristics take over and the

database starts playing a different role in the architecture. Instead of moving and
transforming data, it now acts as a save keeper of the data or data query engine. For
this save keeper role, several database features are important - dimensions and

cubes, partitioning, summary management through materialized views, indexing and query
rewrite.

Page 12

Warehouse Builder, as a design tool allows users to define and design these database structures
and use them in loading and storing data. For a complete discussion on the use of these objects
in data warehousing, please take a look at the Data Warehouse Guide available with the Oracle
database documentation set.

Parallel processing by default

One of the most important characteristics of the code generated by Warehouse Builders is its

ability to use the parallel capabilities of the database. Designers can make use of
these without extensive tuning activities. Warehouse Builder allows for several ways of
doing parallel processing.

On the source side parallel extraction can be done, even with flat files if external tables are used.
Warehouse Builder allows for parallel DML and by default enables this in the code that it
generates. On the target side designers can add hints to specify the degree of parallelism.

Parallel index creation and data object creation are other features that benefits heavily from the
parallel processing capabilities of the database. When creating or re-enabling an index,
Warehouse Builder ensures that the processing is done in parallel if possible.

When using functions in the parallel environment, adding the parallel enabled statement (as is
done in all Warehouse Builder generated ETL code) will allow all in-line functions to be performed
in parallel as well allowing for full parallelism through the transformations.

Data Quality in the engine

One of the new features in Warehouse Builder is the addition of a data quality engine. As is done

with the ETL engine for Warehouse Builder, the Name & Address engine is placed in the
server5. This engine is an internal Oracle engine and has specially been created to
handle external name and address validation libraries.

The Warehouse Builder client adds name and address cleansing capabilities to the ETL
process. When generating code with this functionality in it, PL/SQL APIs are called in the

database server that connects to the Name & Address server. The data is handled in this server
and validated against 3rd party libraries. Since the APIs are PL/SQL they are parallel enabled and
provide scalability and performance to the name & address cleansing.

Currently the available name & address libraries for Warehouse Builder are those delivered by
Trillium and First Logic. Using the adapter technology other vendors can plug their libraries into
the Warehouse Builder infrastructure as well.

Warehouse Builder 9.2 and 10g also contain match/merge functionality embedded in the mapping
editor, allowing you to do advanced data duplication.

Runtime information and reporting

When the PL/SQL code runs in the database and transports data to the targets, audit information

is stored in a set of database tables, the runtime repository. Warehouse Builder can
store information on a record by record basis (including the values of the records) or on
higher aggregation levels. The user can customize the level of auditing information
without changing any logical design in the mapping. Even when the code is generated,

5 This is a separately installed component in the server CD-pack required to use this functionality

in Warehouse Builder

Page 13

e.g. at runtime, this auditing level can be increased or decreased by changing a runtime
parameter on the job.

Warehouse Builder stores information in a runtime schema that is installed from the client. This
schema holds a set of tables and packages to allow for runtime auditing. The packages and
tables are generic in the sense that when Warehouse Builder generates code, calls to the
packages (more specific to procedures within these packages) are made when appropriate. The
audit level and the generation mode that is chosen determine the level of detail that is logged. It is
even possible to switch off this auditing completely to increase the performance for clean data.
The levels of auditing are:

• None; no auditing calls are made
• Statistics; showing the overall load statistics (selected, inserted, updated and number of

errors)
• Error Details; showing error details including error message
• Complete; showing all records including the data of these records

Note that all of these are inclusive, meaning that details include the information logged in
Statistics.

Public views are available on this runtime repository to allow designers to create a reporting
environment. However to ease the task, Warehouse Builder comes with a separate viewing
component on the runtime repository. This is called the Runtime Audit Browser and allows for
easy browsing and drilling within the runtime repository.

Page 14

Conclusion

With its extendible MetaBase, Oracle storage capabilities and extensive support and usage of
open standards, Warehouse Builder is a complete and reliable warehouse and ETL design
environment. With the many graphical design components and web-based metadata reporting
developer productivity is very high. Added to that is the increased productivity of a repository
based tool with life-cycle management.

Warehouse Builder’s unique capabilities to generate specially tuned code for the Oracle database
makes Warehouse Builder a highly scalable and reliable tool for data warehousing. Parallel
enabled by default allows for fast response times even with heterogeneous sources to load from.
Data quality is delivered on the same platform, allowing for usage of 3rd party vendor data files.
Auditing and process information is stored in the runtime repository and easily accessible through
a dedicated environment.

The combination of this strong runtime platform and an integrated metadata repository make
Warehouse Builder one of the leading ETL tools in the market.

Page 15

Oracle Warehouse Builder
Architecture white paper

February 2004

Author: Jean-Pierre Dijcks

Oracle Corporation
World Headquarters
500 Oracle Parkway

Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000
Fax: +1.650.506.7200

www.oracle.com

Warehouse Builder inquiries
http://otn.oracle.com/products/warehouse/content.html

Oracle is a registered trademark of Oracle Corporation.
Various product and service names referenced

herein may be trademarks of Oracle Corporation.
All other product and service names mentioned may

be trademarks of their respective owners.

Copyright © 2004 Oracle Corporation
All rights reserved.

Page 16

http://www.oracle.com/
http://otn.oracle.com/products/warehouse/content.html

	Architectural White paper
	Introduction
	Overview
	The design component
	The runtime component

	The design architecture
	The repository
	The MetaBase
	Object storage and retrieval
	Multi-user and locking service
	Framework support for business logic

	The API and SDK layer
	Public APIs and scripting

	Importing metadata
	Deploying metadata and code
	Life-cycle management

	The client tool
	Relational design
	Dimensional design
	ETL design
	Business intelligence design

	The metadata reporting environment

	The runtime architecture
	The ETL engine
	Extracting data
	Transforming and loading

	Data storage and querying facilities
	Parallel processing by default
	Data Quality in the engine
	Runtime information and reporting

	Conclusion

